TRANSLATIONAL PHYSIOLOGY Requirement of the epidermal growth factor receptor in renal epithelial cell proliferation and migration
نویسندگان
چکیده
Zhuang, Shougang, Yujing Dang, and Rick G. Schnellmann. Requirement of the epidermal growth factor receptor in renal epithelial cell proliferation and migration. Am J Physiol Renal Physiol 287: F365–F372, 2004. First published June 22, 2004; 10.1152/ajprenal. 00035.2004.—We showed that renal proximal tubular cells (RPTC) can proliferate and migrate following plating and oxidant or mechanical injury in the absence of exogenous growth factors; however, the mechanisms of this response remain unclear. We examined whether epidermal growth factor receptor (EGFR) signaling is activated following plating and mechanical injury and mediates RPTC proliferation and migration. EGFR, Akt [a target of phosphoinositide-3-kinase (PI3K)], and ERK1/2 were activated after plating and mechanical injury, and their phosphorylation was further enhanced by addition of exogenous EGF. Inactivation of the EGFR with the selective inhibitor AG-1478 completely blocked phosphorylation of EGFR, Akt, and ERK1/2 and blocked cell proliferation and migration after plating and injury. Inhibition of PI3K with LY-294002 blocked Akt phosphorylation and proliferation, whereas U-0126 blocked ERK1/2 phosphorylation but had no effect on proliferation. Furthermore, p38 was phosphorylated following mechanical injury and the p38 inhibitor SB-203580 blocked p38 phosphorylation and cell migration. In contrast, neither PI3K nor ERK1/2 inhibition blocked cell migration. These results show that EGFR activation is required for RPTC proliferation and migration and that proliferation is mediated by PI3K, whereas migration is mediated by p38.
منابع مشابه
Requirement of the epidermal growth factor receptor in renal epithelial cell proliferation and migration.
We showed that renal proximal tubular cells (RPTC) can proliferate and migrate following plating and oxidant or mechanical injury in the absence of exogenous growth factors; however, the mechanisms of this response remain unclear. We examined whether epidermal growth factor receptor (EGFR) signaling is activated following plating and mechanical injury and mediates RPTC proliferation and migrati...
متن کاملThe Level of Mesenchymal-Epithelial Transition Autophosphorylation is Correlated with Esophageal Squamous Cell Carcinoma Migration
Background: The MET receptor is a critical member of cancer-associated RTKs and plays an important role in different biological activities, including differentiation, migration, and cell proliferation. Methods: In this study, novel MET inhibitors were introduced and applied on esophageal squamous carcinoma cell line KYSE-30, and the level of proliferation and migration, as well as the activated...
متن کاملEGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells
Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of epidermal growth factor receptor (EGFR) with resistance to cytotoxic chemotherap...
متن کاملExpression of Epidermal Growth Factor Receptor by Odontogenic Cysts: A comparative Study of Dentigerous Cyst and Odontogenic Keratocyst
Abstract: Background and Aim: Compare with Dentigerous cyst, Odontogenic Keratocyst is one of exclusive developmental cyst with unique clinical and histopathologic features. Considering the determining role of epidermal growth factor receptor (EGFR) in cell proliferation and survival, and the controversial results of previous studies regarding the expression of this marker by the odontogenic cy...
متن کاملEpiregulin promotes proliferation and migration of renal proximal tubular cells.
Epiregulin is an epidermal growth factor (EGF) member that activates ErBB1 and ErBB4 homodimers and all possible heterodimeric ErbB complexes. Because its role in renal cell regeneration has not been investigated, we assessed the effect of exogenous epiregulin on regeneration of renal proximal tubular cells (RPTC) in primary culture. Epiregulin (10 ng/ml) was equivalent to EGF (10 ng/ml) in enh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004